www.profesorjrc.es

TRABAJO y ENERGÍA

Prof. Jorge Rojo Carrascosa

8 de septiembre de 2016

TRABAJO

La transformación que produce una fuerza, esto es, se habla de trabajo cuando una fuerza transmite una energía.

TRABAJO

La transformación que produce una fuerza, esto es, se habla de trabajo cuando una fuerza transmite una energía.

ENERGIA

Es la capacidad que posee un cuerpo para producir transformaciones sobre si mismo o sobre el entorno

TRABAJO

La transformación que produce una fuerza, esto es, se habla de trabajo cuando una fuerza transmite una energía.

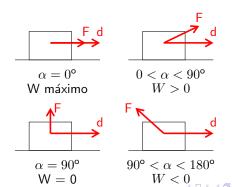
ENERGIA

Es la capacidad que posee un cuerpo para producir transformaciones sobre si mismo o sobre el entorno

TRABAJO ⇔ ENERGIA

MÁXIMA PRINCIPAL EN CIENCIAS

La energía total del Universo ni se crea ni se destruye, tan sólo se transforma. La energía total del universo se conserva.


Trabajo mecánico, Julios (J)

• Si la Fuerza y el desplazamiento tienen la misma dirección:

$$W = F\Delta x = F(x_f - x_0)$$

• Si la fuerza y el desplazamiento no tienen la misma dirección

$$W = F_x \Delta x = F \Delta x \cos \alpha$$

Tipos de Energía

1 Energía Cinética, E_c : Energía debida al movimiento.

$$E_c = \frac{1}{2}mv^2$$

TEOREMA DE LAS FUERZAS VIVAS

$$W = \Delta E_c = E_{c2} - E_{c1}$$

ullet Energía potencial gravitatoria, E_p : Energía relacionada con la posición

$$E_p = mgh$$
 \Rightarrow $W = -\Delta E_p = -(E_{pB} - E_{pA})$

3 Fuerza potencial elástica, E_k : Energía debida a la compresión o dilatación de un cuerpo elástico.

$$E_k = \frac{1}{2}kx^2$$

Conservación de la Energía mecánica

PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA

En un sistema aislado, en el que no hay rozamiento, la energía mecánica se conserva, es decir,la suma de las energías cinetica y potencial es constante.

$$E_m = E_c + E_p$$

$$W = \Delta E_m = \Delta (E_c + E_p) = 0 \rightarrow E_m = cte$$

Las fuerzas gravitatoria, electrostática y elastica son conservativas, las fuerzas de rozamiento **no**.

LEY DE CONSERVACIÓN DE LA ENERGÍA

$$\Delta E_m = W_{roz}$$

La Energía total del universo se conserva.

Energía del oscilador armónico

ENERGÍA CINÉTICA

Depende de la posición, es periódica, máxima en la posición de equilibrio y mínima en los extremos.

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}mk(A^2 - x^2) = \frac{1}{2}kA^2\cos^2(\omega t - \phi)$$

ENERGÍA POTENCIAL

Depende de la posición, es periódica, máxima en los extremos y mínima en la posición de equilibrio.

$$E_p = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\sin^2(\omega t - \phi)$$

ENERGÍA MECÁNICA

No depende de la posición, depende de k y de la amplitud.

$$E_m = E_c + E_p = \frac{1}{2}k(A^2 - x^2) + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$$

Potencia y Rendimiento

POTENCIA

La potencia mide la eficacia de una máquina. Relaciona el trabajo que desarrolla ésta con el tiempo que tarda en realizarlo. Se mide en Watios (W)

$$P = \frac{W}{t} = \frac{Fd}{t} = Fv_m$$

RENDIMIENTO

Razón entre el trabajo útil y el trabajo realizado o consumido

$$R(\%) = 100 \frac{W_{util}}{W_{consumido}}$$

$$R(\%) = 100 \frac{P_{realizada}}{P_{consumida}}$$

El Rendimiento no tiene dimensiones.

